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ABSTRACT

The results of ultimate static strength tests from dif-
terent types of aircraft stouctures and structural parts ob-
tained from several ajreraft manufacturers were statistical-
ly analysed. By using test samples with at least 3 replica-
(ions and reducing sample data t9 thoir‘m;nn. all results
could be unitied in a single population of over 300 data
points and these points fitted by the Third Asymptotic dis-
tribution of smaliost values (Weibull distribution), This
distribution is used as a vepresentative distribution of the
ultimate strength of an aircraft combined with the ratio be-
tween the design ultimate load and the ultimate strength at-
tainad in actual tests, dervived trom th?:tost data.,

By combining the distribution of strength with representa-
tive distributions of gqusts in flight through thunderstorm tur-
hulonce and of operational loads rospoctivély. realistic reli-
ability rfunctions tor ultimate oad failure of gust-sensitive
(long range) and of maneuver sensitive (zshort range) airceraft

Hructures were obtained for various assumed levels of the ul-

-

timate desigan load,

This abstract is subfect o special export contrels and cach tranamittal
toy forcion goveraments or tforeian nationals mavy be made only with prior
approvatl of thes Metals amd Coramic: Division (MAM), Air Foree Materials
Taboratory, Weight=Patterson Alr Foree Riae, Ohio 4547170,

tii



REFERENCES. ..

TABLE OF CONTERTS

Page
Introductionltt-‘l.l'.!."nl.lﬁl..!c‘l.l‘v..ol& 1
Analysis ofData.)io.lO.".O."J(O..’."&l.‘ 2
Reliability Analysis For Thunderstorm
Turbilence (Long Range Aircraft)....... cas 9
Reliability Analysis For QOperational
(Maneuver) Loads (Fighter Aircraft)....... 13
T 8 3 & 3 0 8 8 2O S B v P BB s T YN0 s E S e E LY Yoo 15

iv




Figure

10

1

12

14

List Of Figures

Probability distribution of structural resist-
ance (287 test data).

Prchability distribution of structural resist-
ance {341 test data},

Probability dist:ilution of group means of
structural resistance (based on 7 groups),

Domain of integration for the distribution
function of Z.

Probability distribution of Z,

Test results expresszed in terms of design ulti-
mate load (66 tfsts) compared with results of
previocus study,

Probability distribution of structural regist-
ance (258 tzst dataj.

Probakility distribution of group means of
struczural resistance {(based on § groups).

Probzbility distribution of 2 {withocut high
strength data),

Probability digtribution of structural resist-
ance (based on 35 data points),

Probability distribution of thunderstorm gqust
velogity,

Proi:ability of survival under thunderstorm tur-
bulence.

Probability distrabutions of £light !maneuver)
Lead factor.

Probability of survival under flight {xanzuver)
load factors,
Y

Page

21

22

23

24

25

26

27

28

30

31

32

33

34




1. Introduction

It is the purpose of this study to estimate the
structural reliability of critical parts of airframes on the
basis of ultimate strength test data of aircraft structures
from various sources and of the spectrum of extreme gust and
maneuver loads. The Third Asymptotic distribution function
of Extreme (Smallest) Values (Weibull distribution) has been
chosen to fit the ultimate strength data obtained from tests
on aircraft structural parts. Thus the strength of any one
nember of the airframe can be expressed in terms of its de-
sign ultimate load with the aid of this distribution Function,

A comparison is made between the recently obtained
test data and the test results obtained by the Air Fcrce about
twenty years ago.l This comparison throws some light cn cer=
tain aspects of aircraft structural development during this perindg.
Representative thunderstorm and flight load spectra are
adopted to match the distribution function of ultimate strength,
and the risk of "ultimate load failure" is computed according to
a standaid procedure developed for this purpose 2 by assuaming

various values of the design gust or load factor., The associated

e i e A K ot




reliability functions are sukbsequently evaluated in terms of the
number of load application or of flight time of the aircraft.

2, Analysis of Data

Test data from 19 different types of structures and
32 types of panels have been chtained from various aircraft
manufacturers through the efforts of the Air Force Materials
Laboratory, AFSC, WPAFB, These data have been analvzed and
evaluated according to types of loading, types of structure
a~1 number of tests in each group and are summarized in Tables
1l and 2.

The expedient assumption is now made that the distri-
bution of the ultimates strength of the test gpecimens can be
considered to represent a single population, irrespective of
the type of structures tested and its mode of failure, as long
as this failure can be classified as "ultimate", This assump-
tior unavoidable hecause replications of ultimate load tests
of large structures and structural parts are and will always be
geverely limited by technical and economic considerations, W.th-
out it reliability analysis of aircraft structures becomes cb-
viously impossible since the individual small samples are use=
less for this purpose.

Many distribution functions have been tried to fit
the experimental results, but it appears that the Weibull

distribution function prcvides a reasonably sacisfactory repre-




sentation of the data. The probability of survival expressed

in terms of this distribution is given by the expression

k
L (x) = exp [~ () ] (1)

where by definition Lx(x) is the probability of survival Lx(x)=
1~ Px(x), the variate X = Ri/ﬁi, Ri being the ultimate strength
of any one member in the i-th group while ii is the group mean
of the i-th group; v is the characteristic value of the distri-
butio:. and k a scale factor,

The values of X (Ri/ﬁi) have been calculated for every
specimen in each group (at least 3 data values from nominally i-
dentical specimens under the same type of loading in each group)
and arranged in ascending order of magnitude. These values have
been plotted against the plotting position, where m = 1,2,..n and
n = the total numbar of data points, on extreme value probability
paper as shown in Fig, 1 (data from General Dynamics is not in-
cluded, see Table 2). In Fig. 1 a straight line has been drawn
t. fit the data points cisregarding extreme points of high strength
on the assumption that the required distribution of ultimate strength
should be representative towards the low rather than towards the
high range of data points. The extreme points at both tails of
the distribution have been identified by letters (as listed in
Tables 1 and 2).

T"ne parameters of Eq. 1 are oObtained graphically:

k = 31,0 and v = 1,014




Thus the probability of survival
31

Lo(x) = exp [ (7577 | (2)

wWhen data points from General Dynamics are taken into

consideration, the extreme points of low strength deviate con-
siderably from the straight line as shown in Fig, 2. This is
simply because the individual results in several groups of Gen-
eral Dynamics data scattered rather widely within the groups, as
indicated by the identifying letters in Fig. 2 and Table 2,
The reason for this wide scatter is not known; however its ex-
istence reveals that a small group of somewhat odd behavicr can
significantly change the nature of the distribution. The equa-

tion of the straight line fitting the data in Fig.2 is

25
L (x) = exp [~ (7575 ! (2a)

However in the following analysis only Eq. (2) is used.

Some of the experimental data are expressed in terms
of "design ultimate load" or of "limit load" (design ultimate
load = 1,5 limit load); these groups are identified by asterisks
in Tables 1 and 2, As a result the group means of these groups
can also be expressed in terms of their design ultimate load,
The values of these group means have been plotted against m/(n+l)
as shown in Fig, 3. A smooth curve has been chosen to fit these
points fairly well, except for one extreme point of high value,

The equation of this curve is

4




= I A
LY(y) exp | (0.96) | (3)

where ¥ = ﬁi/RDUi (R, = design ultimate load). It is assumed
that the inclusion of the test data for which the design ulti-
mate load or limit load has not been specified would not change
the form and only insignificantly change the parameters of Eq.
(3).

From Egs. (2) and (3) the distribution and density

functions of X and Y are easily obtained

« 31
1 -exp [~ (7717 !

Fx(x) =1 - Lx(x)

(4)

and

Foly) =1 -1.(y) =1~ exp [- "6'."5"6"241
their density functions therefore
fxlx) = dZ’,f(X) = 1?314 (o1 )30 exp [~ (1.314)31]
and (5)
£ (y) =§f-¥(y’ = =24 ( =% )23 exp [- ('“—L)Ml
Y dy 0.96 ' 0.96 0.96

Since R, = xﬁi and ii = YyR_.. , it follows that

DU,
i
Ry = X RDUi = ZRpuy, (6)
if 2 = XY. Z is a random variable and R the computed de~

DU

sign value for a specific critical member of the aircraft struc-

ture, The distribution of Z represents therefore the distribution




of ultimate strength of critical members of the airframe and

thus of the airframes %hemselves. By definition

FZ(Z) P{2 s 2z} = P{XY < 2}

[ £, (x,y)dxay (7)
XY

i
—

[ ¢
J

x(x)fY(y)dxdy

(=)

where D is the domain of integration as shown in Fig. 4; hence
L] rz/x © z

I fx(x) J fy(y)dydx = I fx(x)FY(;)dx

o o o

FZ(Z)

or
- 30 31 24
1 31 ¢ X X Z
Fy{z) =1 - l; (T7o1a) Toota) exp [- (TTo1g) lexpl- (Grggy) 1dx

(8)
if the expressions of fx(x) and FY(y) are substituted into the

above integral,

31
With the abbreviation t = exp(- (3 314) 1, Eq. (8)

is transformed into

1 24 - 24/31

—Z
F,(z) =1 -.[o expl- (G5o3q) (- 4nt) lat  (9)

which is a form convenient for numerical evaluation, The asso-

ciated reliability function

1 , 24 }
LZ(Z) = J‘ exp [~ (m) (- 4nt)

o

24/31]dt (10)




is presented in Fig. 5 (solid curve), for all values of Z;
this curve can be fitted by the equation

, 19
LZ(Z) = exp[- (0'96) ] (11)

The small difference between Eq. (1G6) and Eq. (11) around
Z =1.0 is shown in Fig. 5,

The mean value and the variance of the random variable

Z are
EZ = vl (1 + 1/k)
and (12)
2 2.
Var 2 = v {I'(1 + 2/k)- [T(1 + 1/k)]"}
From Eq. (l1) v =0.96 and k = 19; therefore
EZ = 0,933
and
c_ = JVar 2 = 0,061

These values suggest that, in general, the mean value of the
ultimate strength of nominally identical members of aircraft
structures is about 93 percent of its nominal design ultimate
load, while the standard deviation is about 6 percent of the
design ultimate load,

All test data expressed in terms of design ultimate
load or limit load have also been considered without regard to

the requirement of at least three test replications in each




group and listed in Table 3. These data have been plotted in
Fig. 6 and compared with the iresults of Jablecki's tests1
performed during the 1940's. The curve obtained from current
data indicates that the processes of design and construction
of aircraft structures with respect to ultimate load failure
have been improved within the two decades. For example Fig.
6 suggests that about 90 percent of the currently produced
aircraft structural members will sustain 80 percent of their
nominal design ultimate load without failure, whereas in the
1940's only about 60 percent of the des’gn ultimate load was
sustained without failure by 90 percent of the structural mem-
bers. However, there has been no significant change in the
percentage of structural parts that fail to cariy about 27 per-
cent of the full nominal design ultimate load: only about one-
half of all specimens tested can be expected to sustain this
load level without failure.

An attempt has been made to improve the fit of the assumed
distribution of X by eliminating the high strength data as shown

in Fig. 1 on the assumption that as the third asymptotic dis-

tribution of smallest values, it is more representative towards
the lower range of data prints than in the high range. The new
plot is shown in Fig. 7; the equation of the straight iine to
fit the data points is

x 33.8
= - =\
Lx(x) exp[ (1.105} ]

8
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with two extreme points of low strength belonging to the same
group scattering far from the straight line.

The distribution of Y based on six group means expressed
in terms of design ultimate load or limit load has been plotted
in Fig. 8 and fitted by the equation

L(y) = expi- (3’}55)241

On the basis of a similar analysis as discussed in the pre-

vious part of this section the probability function is obtained
1

_ Z 24 - 24/33.8
L,(z) = Lexp[ (oesgs) (- 4n t) Jat
and approximated by
2 19
Lz(z) = exp[- (0‘95 ) (11a)

as shown in Fig, 9.

A plot of the data of six groups (35 data points) expressed
in terms of design ultimate load or limit load has been presented
in Fivy. 10, This diagram shows that the data scatter arcund the
straight line of Eq. (1l). This fact supports the assumption
made in the derivation of Lz(z) that X «nd Y are independent ran-
dom variables,

3. _Reliability Analysis For Thunderstorm Turbulence

(Long Range Aircraft)

A copresentative spectrum of thunderstorm gust veloc-
ity4 forms a basis for the distribution function of extreme load
intensities selected for the evaluation of the risk of failure

and the determination of the reliability function for ultimate

strength failure of aircraft structures. 1In Fig, 11 the prob-

9




ability of exceedance is chosen as ordinate instead of the cumu-

lative frequency of load peaks per mile of flight. The spectrum
in Fig. 11 {solid curve) is approximated by the equation

-0,22u =0.20u

EU(u) = 0,22 + 0,78 (13)

where §U(u) =1 - FU(u) and U = gust velocity in ft./sec.
For design conditions it is assumed that the gust

load is directly proportional to the gust velocity. Hence

gust load - gqust velocity, U _ A (14)
Rou oy
where UDU is the specific thunderstorm gust velocity correspond-

ing to the design ultimate load, and the ratic A, a random vari~
able, represents the variable gust load in terms of the design
ultimate load.

From Eq. (13) the distribution function of A is

FA(X) =1 - {0.22 exp(-0.22 UDUK)+ 0.78 exp(~0.20 UbUk)}
(15)
The reliability function LN(N) is defined as the prob-
ability of survival of the aircraft structures under a series of

N load applications, so that

- -]

" N
L™ = %)[FA(Z)] £,(z)az (16)

where ?A(z) is given by Eq. (14) and fz(z) can be obtained
from Eq.(1l1).
For practical purposes the following first approxima-

tion of Eq. (16) can be used:

10




LN(N) = exp{~ N pf) for N P, << 1 {17}

where P is the probability of failure under single load annli-~

cation obtained from
-4
f LY
pf = FZ(X) fA(A)dR {ig;

-~

(o]

From Eq. (I.11)

% 19

Fz(k) = 1= LZ(R) =1 - expi~ ('5:';5 ] (12)

and by differentiating Eq. (15) wi.th respect to 1,

= exp (- 156 -0, .
£,(0) UDU{0.0484 exp(- 0.22 UDUA)+ 0.156 exp(-0,20 UbU))}

(20)
Substituting the above expressions into Eq. (18),
r y_ 12
P= bﬂU %}{l - exp[-(Ejgg 11{0.0484 exp(~0.22 Uhux)
+ 0.156 exp(-0.20 UDU A)ldx (21)

with the substitution w = exp(~i), ‘he above integral is trans-

formed into tue form,

19
1l
P in W {(0.22 U,,~1.0)
= - (e Emm—— DU
Ps UDU ; {l-exp[-( 0.96 11(0.0484w

° (22)

+ 0.156w(0'20 UDU~1.O)]dw

which is used for numerical calculation,

For various val.ues of UD can be evaluated from

v Ps
Eq. (22) , and the reliability function obtained from Eq. (17)

as a function of the number of gust load applications. Four values

11




of UbU have been assumed: UbU= 90 ft./sec,, 75 ft./sec., 60

ft./sec. and 45 ft,./sec.; the corresponding values of Pg and
the function LN(N) are shown in Fig. 12,

The proportion of flight through thunderstorm tur-
bulence is about 0.1 percent of flight distance.5 It is
assumed that 10 gusts per mile are encountered by an aircraft
during thunderstorm flight at 10-20,000 ft. level, Assuming
further that the design life of the aircraft is 5 x 104 hours
and the average flight velocity is 400 miles per hour, the num-
ber of load applications is converted into time of flight in
hour (4 gusts are equivalent to 1 hour of flight), The relia-
bility function of ultimate strength of aircraft structures can
therefore be expressed as a function of flight hoursg as shown
in Fig. 12,

In a recent report6 the hours to reach or exceed ulti-
mate strength have been computed for two aircraft designed by
Lockheed: for the L~-188 this figure is 7.14 x 107 hours and for
the L-749 2,38 x 108 hours., With these data the reliability
functions for these two aircraft have been plotted in Fig., 12,
The difference between the present analysis and the Lockheed
analysis is probably due to the fact that the latter is apparent-
ly involved only with the random character of the applied load
while the strength is assumed constant, while in the present

analysis the statistical character of strength is combined with

12
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that of the gust load. The returns period of failure accord-

ing to this anal,sis are 2.42 x 106 hours for U . = 90 £t./sec.,
2,02 x 105 hours for UDU = 75 ft./sec., 1.52 x 104 hours for
3
= £ = . -
UDU = 60 ft./sec. and 1,06 x 10° hours for UDU 45 ft,/sec

The values of p. computed on the basis of Eq. (1la) are

7

1.20 x 10 ', 1.42 x 10'5, 1.84 x 10~ and 2.54 x 10”% by assuming

UDU = 90 ft./sec., 75 ft./sec., 60 ft./sec., and 45 ft./sec. re-
spectively. It car be seen that there is no significant diffex-
ence between the values of pf by adopting either Eqg. {(11) or
Eq. (1la) for the ultimate strength distribution of the criti-

cal parts of aircraft structures.

4. Reliability Analysis For Operaticnal (Maneuver) Loads
(Fighter Aircraft)

A representative spectrum of operational (maneuver) laad
factors has been constructed on the basis of flight records from
the F-105B and F-105%A aircraft.7 In Fig. 13 the probability of
axceedance of the load factor n has been plotted for both alrceraft
and an intermediate spectrum selected for the relisbility analysis
which can be approximated by the eguation

-1.77n 3.3¢n

ﬁn(n) = 2,935¢ + 13.830e (23)

where F {n) =1 - F {(n),
n n
The assumption is now made that, for purposes of design the
operational load is proportional to the load favtor o

operational load load factor a .
-y = FEmeLAL m f (a4}

i
buU 5184
13




vhere LN is the design load factor of ultimate load design

and the ratio A, a random variable, represents the variable
maneuver load factor in terms of the design ultimate load.
From Eq. (23) the distribution function of A is obtained

-l.77nD

F,(A) =1 - {2.935e UM+ 13.830e73-320p0%) (25

and therefore

fA(A) = nDU[5.195e + 45.916e ] (26)

The probability of failure according to Eq. (18) with Fz(x)

from Eq. (19)

rl . in W 19
P, =n_ | {1 - expl-(~- ) 13 .
£ DU ‘O 0.96 (27)

(1.7705,-1) (3.32npy~1)

[5.195w + 45.916w Jdw

where w = exp(-\).
Equation (27) has br en numerically e\aluated for the ulti-

mate design load factors n = 13, 11, 9 and 7 and the correspond-

DU
ing reliability functions have been constructed in accordance with
Eq. (17) and are represented in Fig. 14 in terms of the number of
load cycles and of hours ot flight. The conversion is based on

the assumption that roughly 102 load cycles are equivalent to one

heur of flight at an average of 350 to 400 mph in accordance with

the flight records.

14
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